Engineering a Tumor Microenvironment‐Mimetic Niche for Tissue Regeneration with Xenogeneic Cancer Cells
نویسندگان
چکیده
The insufficient number of cells suitable for transplantation is a long-standing problem to cell-based therapies aimed at tissue regeneration. Xenogeneic cancer cells (XCC) may be an alternative source of therapeutic cells, but their transplantation risks both immune rejection and unwanted spreading. In this study, a strategy to facilitate XCC transplantation is reported and their spreading in vivo is confined by constructing an engineering matrix that mimics the characteristics of tumor microenvironment. The data show that this matrix, a tumor homogenate-containing hydrogel (THAG), successfully creates an immunosuppressive enclave after transplantation into immunocompetent mice. XCC of different species and tissue origins seeded into THAG survive well, integrated with the host and developed the intrinsic morphology of the native tissue, without being eliminated or spreading out of the enclave. Most strikingly, immortalized human hepatocyte cells and rat β-cells loaded into THAG exert the physiological functions of the human liver and rat pancreas islets, respectively, in the mouse body. This study demonstrates a novel and feasible approach to harness the unique features of tumor development for tissue transplantation and regenerative medicine.
منابع مشابه
STAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell
Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...
متن کاملLow pH preconditioned amniotic epithelial cells for stem cell therapy of cancer
Amniotic epithelial cells (AECs) possess unique characteristics, which make them a suitable source for cell-based therapeutic strategies. AECs have stem cell properties with low-immunogenicity (due to expressing HLA-G molecule and absence of MHC class I and II antigens) and no ethical problems, as well as availability in sufficient numbers, which can be obtained from a placenta. We have recentl...
متن کاملConcise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.
The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug...
متن کاملModeling Breast Acini in Tissue Culture for Detection of Malignant Phenotype Reversion to Non-Malignant Phenotype
Backgrounds: Evidence is accumulating to support disruption of tissue architecture as a powerful event in tumor formation. For the past four decades, intensive cancer research with the premise of “cancer as a cell based-disease” focused on finding oncogenes or tumor suppressor genes. However, the role of the tissue architecture was neglected. Three dimensional (3D) cell cultures which can recap...
متن کاملThe Role of Inflammation and Changes of Adipose Tissue-Resident Immune Cells in Increasing the Risk of Cancer: A Narrative Review
The incidence of obesity, as a major health problem, has increased significantly over the past decades. This condition is associated with an increased risk of cancers, type 2 diabetes, and cardiovascular diseases. The current study aimed to investigate the effects of inflammation and changes of adipose tissue-resident immune cells on increasing the risk of cancer in obese individuals. In obesit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2018